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Outline

Data-Intensive Scalable Computing
Focus on petabytes, not petaflops
Rethinking machine design

Map/Reduce Programming Model
Suitability for wide class of computing tasks

Strengths & Limitations
Scalability
Performance

Beyond Map/Reduce
Small variations
Other programming models
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Our Data-Driven World

Science
Data bases from astronomy, genomics, natural languages, 
seismic modeling, …

Humanities
Scanned books, historic documents, …

Commerce
Corporate sales, stock market transactions, census, airline 
traffic, …

Entertainment
Internet images, Hollywood movies, MP3 files, …

Medicine
MRI & CT scans, patient records, …
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Why So Much Data?
We Can Get It

Automation + 
Internet

We Can Keep It
Seagate Barracuda
1.5 TB @ $76

5¢ / GB
(vs. 40¢ in 2007)

We Can Use It
Scientific 
computation
Business 
applications
Harvesting Internet 
data
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Oceans of Data, Skinny Pipes

1 Terabyte
Easy to store
Hard to move

Disks MB / s Time
Seagate Barracuda 115 2.3 hours
Seagate Cheetah 125 2.2 hours

Networks MB / s Time
Home Internet < 0.625 > 18.5 days

Gigabit Ethernet < 125 > 2.2 hours

PSC Teragrid 
Connection

< 3,750 > 4.4 minutes
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Data-Intensive System Challenge

For Computation That Accesses 1 TB in 5 minutes
Data distributed over 100+ disks

Assuming uniform data partitioning

Compute using 100+ processors
Connected by gigabit Ethernet (or equivalent)

System Requirements
Lots of disks
Lots of processors
Located in close proximity

Within reach of fast, local-area network
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Google Data Centers

Dalles, Oregon
Hydroelectric power @ 2¢ / 
KW Hr
50 Megawatts
Enough to power 6,000 homes

Engineered for maximum 
modularity & power efficiency
Container: 1160 servers, 
250KW
Server: 2 disks, 2 processors
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High-Performance Distributed 
Computing: Two Versions
Grid Computing
Connect small number of  

big machines
Allow resource sharing 
among supercomputers

Issues
Programs must usually 
be specialized for 
machine
Hard to get cooperation 
from multiple 
organizations

DISC System
Build big system from 

many small machines
Use distributed systems 
principles to construct 
large-scale machine
File system provides 
distribution, reliability, 
recovery
Dynamically scheduled 
task as basic processing 
unit
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Programming Model Comparison

Bulk Synchronous
Commonly used for compute-intensive applications

Map/Reduce
Commonly used for data-intensive applications

Issues
Raw performance
Scalability

Cost required to increase machine size by K
» ≥ K

Performance achieved by increasing machine size by K
» ≤ K

Frequency and impact of failures
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Bulk Synchronous Programming

Solving Problem Over Grid
E.g., finite-element 
computation

Partition into Regions
p regions for p processors

Map Region per Processor
Local computation sequential
Periodically communicate 
boundary values with 
neighbors
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Typical HPC Operation
Characteristics

Long-lived processes
Make use of spatial locality
Hold all program data in 
memory (no disk access)
High bandwidth 
communication

Strengths
High utilization of resources
Effective for many scientific 
applications

Weaknesses
Requires careful tuning of 
application to resources
Intolerant of any variability

P1 P2 P3 P4 P5 Memory
Shared Memory

P1 P2 P3 P4 P5

Message Passing
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Map/Reduce Programming Model

Map computation across many objects
E.g., 1010 Internet web pages

Aggregate results in many different ways
System deals with issues of resource allocation & reliability

M

x1

M

x2

M

x3

M

xn

k1

Map

Reduce
k1

kr

• • •

• • •

Key-Value
Pairs

Dean & Ghemawat: “MapReduce: Simplified Data 
Processing on Large Clusters”, OSDI 2004
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Map/Reduce Example

Create an word index of set of documents
Map: generate 〈word, count〉 pairs for all words in document
Reduce: sum word counts across documents

Come,
Dick

Come 
and 
see.

Come 
and 
see 

Spot.

Come 
and 
see.

Come, 
come.

M Extract

Word-Count
Pairs

〈dick, 1〉

〈see, 1〉

〈come, 1〉

〈and, 1〉

〈come, 1〉

〈come, 1〉

〈come, 1〉

M M M M

〈come, 2〉

〈see, 1〉

〈and, 1〉
〈and, 1〉

〈spot, 1〉

Sumdick
∑

1

and
∑

3

come
∑

6

see
∑

3

spot
∑

1
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Map/Reduce Operation
Characteristics

Computation broken into 
many, short-lived tasks

Mapping, reducing

Use disk storage to hold 
intermediate results

Strengths
Great flexibility in placement, 
scheduling, and load 
balancing
Can access large data sets

Weaknesses
Higher overhead
Lower raw performance

Map
Reduce

Map
Reduce

Map
Reduce

Map
Reduce

Map/Reduce
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System Comparison:
Programming Models

Programs described at very 
low level

Specify detailed control of 
processing & communications

Rely on small number of 
software packages

Written by specialists
Limits classes of problems & 
solution methods

Application programs 
written in terms of high-level 
operations on data
Runtime system controls 
scheduling, load balancing, 
…

Conventional HPC

Hardware

Machine-Dependent
Programming Model

Software
Packages

Application
Programs

Hardware

Machine-Independent
Programming Model

Runtime
System

Application
Programs

DISC
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HPC Fault Tolerance

Checkpoint
Periodically store state of all 
processes
Significant I/O traffic

Restore
When failure occurs
Reset state to that of last 
checkpoint
All intervening computation 
wasted

Performance Scaling
Very sensitive to number of 
failing components

P1 P2 P3 P4 P5

Checkpoint

Checkpoint

Restore

Wasted
Computation
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Map/Reduce Fault Tolerance
Data Integrity

Store multiple copies of each 
file
Including intermediate 
results of each Map / Reduce

Continuous checkpointing

Recovering from Failure
Simply recompute lost result

Localized effect

Dynamic scheduler keeps all 
processors busy

Map
Reduce

Map
Reduce

Map
Reduce

Map
Reduce

Map/Reduce
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DISC Scalability Advantages

Distributed system design principles lead to scalable design
Dynamically scheduled tasks with state held in replicated files

Provisioning Advantages
Can use consumer-grade components

maximizes cost-peformance

Can have heterogenous nodes
More efficient technology refresh

Operational Advantages
Minimal staffing
No downtime
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Getting Started
Goal

Get people involved in DISC

Software
Hadoop Project

Open source project providing file system and Map/Reduce
Supported and used by Yahoo
Rapidly expanding user/developer base
Prototype on single machine, map onto cluster
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Exploring Parallel Computation Models

DISC + Map/Reduce Provides Coarse-Grained Parallelism
Computation done by independent processes
File-based communication

Observations
Relatively “natural” programming model
Research issue to explore full potential and limits

Low Communication
Coarse-Grained

High Communication
Fine-Grained

SETI@home PRAMThreads

Map/Reduce

MPI
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Example: Sparse Matrices with 
Map/Reduce

Task: Compute product C = A·B
Assume most matrix entries are 0

Motivation
Core problem in scientific computing
Challenging for parallel execution
Demonstrate expressiveness of Map/Reduce

10 20

30 40

50 60 70

A
-1

-2 -3

-4

B
-10 -80

-60 -250

-170 -460

C

X =
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Computing Sparse Matrix Product

Represent matrix as list of nonzero entries
〈row, col, value, matrixID〉

Strategy
Phase 1: Compute all products ai,k · bk,j

Phase 2: Sum products for each entry i,j
Each phase involves a Map/Reduce

10 20

30 40

50 60 70

A
-1

-2 -3

-4

B
1 110

A

1 320
A

2 230
A

2 340
A

3 150
A

3 260
A

3 370
A

1 1-1
B

2 1-2
B

2 2-3
B

3 2-4
B
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Phase 1 Map of Matrix Multiply

Group values ai,k and bk,j according to key k

1 1-1
B

2 1-2
B

2 2-3
B

3 2-4
B

Key = row

1 110
A

1 320
A

2 230
A

2 340
A

3 150
A

3 260
A

3 370
A

Key = 2

Key = 3

Key = 1
1 110

A

3 150
A

2 230
A

3 260
A

1 320
A

2 340
A

3 370
A

1 1-1
B

2 1-2
B

2 2-3
B

3 2-4
B

Key = col
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Phase 1 “Reduce” of Matrix Multiply

Generate all products ai,k · bk,j

1 1-10
C

3 1-50
A

2 1-60
C

2 2-90
C

3 1-120
C

3 2-180
C

1 2-80
C

2 2-160
C

3 2-280
C

Key = 2

Key = 3

Key = 1
1 110

A

3 150
A

2 230
A

3 260
A

1 320
A

2 340
A

3 370
A

1 1-1
B

2 1-2
B

2 2-3
B

3 2-4
B

X

X

X
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Phase 2 Map of Matrix Multiply

Group products ai,k · bk,j with matching values of i and j

1 1-10
C

3 1-50
A

2 1-60
C

2 2-90
C

3 1-120
C

3 2-180
C

1 2-80
C

2 2-160
C

3 2-280
C

Key = 1,2

Key = 1,1

Key = 2,1

Key = 2,2

Key = 3,1

Key = 3,2

1 1-10
C

3 1-50
A

2 1-60
C

2 2-90
C

3 1-120
C

3 2-180
C

1 2-80
C

2 2-160
C

3 2-280
C

Key = row,col
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Phase 2 Reduce of Matrix Multiply

Sum products to get final entries

1 1-10
C

2 1-60
C

2 2-250
C

3 1-170
C

1 2-80
C

3 2-460
C

-10 -80

-60 -250

-170 -460

C

Key = 1,2

Key = 1,1

Key = 2,1

Key = 2,2

Key = 3,1

Key = 3,2

1 1-10
C

3 1-50
A

2 1-60
C

2 2-90
C

3 1-120
C

3 2-180
C

1 2-80
C

2 2-160
C

3 2-280
C
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Lessons from Sparse Matrix Example

Associative Matching is Powerful Communication 
Primitive

Intermediate step in Map/Reduce

Similar Strategy Applies to Other Problems
Shortest path in graph
Database join

Many Performance Considerations
Kiefer, Volk, Lehner, TU Dresden
Should do systematic comparison to other sparse matrix 
implementations
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Tweaking MapReduce

Map/Reduce/Merge
Yang, et al.  Yahoo & UCLA
Add merge step to do tagged merge of data sets

E.g., getting elements from matrices A & B

Demonstrate expressive power of relational algebra

Local Iterations
Kambatla, et al., Purdue
Support local and global iterations
Step toward bulk synchronous model
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Global

Local

Local

Local

Global

Local

Local

Global

Local / Global Map/Reduce

Iterative Computations
e.g., PageRank

Graph Partitioning
Partition into clusters
Colocate data for each 
cluster

Computation
Compute solution for  
each cluster, holding 
inter-cluster values 
constant
Update inter-cluster 
values
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Pig Project

Chris Olston, Yahoo!
Part of Apache/Hadoop

Merge Database & Programming
SQL-like query language
Set-oriented function application

Implementation
Map onto Hadoop
Automatic selection / optimization of algorithm
Captures low-level tricks programmers have devised for 
Map/Reduce
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Generalizing Map/Reduce
E.g., Microsoft Dryad Project

Computational Model
Acyclic graph of operators

But expressed as textual program

Each takes collection of objects and 
produces objects

Purely functional model

Implementation Concepts
Objects stored in files or memory
Any object may be lost; any 
operator may fail
Replicate & recompute for fault 
tolerance
Dynamic scheduling

# Operators >> # Processors
x1 x2 x3 xn

• • •

Op2 Op2 Op2 Op2• • •

• • •

Opk Opk Opk Opk• • •

Op1 Op1 Op1 Op1
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Implementation Challenges

Hadoop Platform is Blessing
Large community adding features, improving performance
Easy to deploy
Growing body of documentation and materials
Works well enough for range of applications

… And Curse
Map & reduce functionality hardwired
Not designed as extensible platform

Dryad Not Widely Adopted
305 citations on Google Scholar vs. 1759 Map/Reduce
Built on .NET
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Conclusions

Distributed Systems Concepts Lead to Scalable 
Machines

Loosely coupled execution model
Lowers cost of procurement & operation

Map/Reduce Gaining Widespread Use
Hadoop makes it widely available
Great for some applications, good enough for many others

Lots of Work to be Done
Richer set of programming models and implementations
Expanding range of applicability

Problems that are data and compute intensive
The future of supercomputing?
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