
Data
Intensive

Scalable
Computing

http://www.cs.cmu.edu/~bryant

Randal E. Bryant
Carnegie Mellon University

Finding the Right Programming Models

– 2 –

Outline

Data-Intensive Scalable Computing
Focus on petabytes, not petaflops
Rethinking machine design

Map/Reduce Programming Model
Suitability for wide class of computing tasks

Strengths & Limitations
Scalability
Performance

Beyond Map/Reduce
Small variations
Other programming models

– 3 –

Our Data-Driven World

Science
Data bases from astronomy, genomics, natural languages,
seismic modeling, …

Humanities
Scanned books, historic documents, …

Commerce
Corporate sales, stock market transactions, census, airline
traffic, …

Entertainment
Internet images, Hollywood movies, MP3 files, …

Medicine
MRI & CT scans, patient records, …

– 4 –

Why So Much Data?
We Can Get It

Automation +
Internet

We Can Keep It
Seagate Barracuda
1.5 TB @ $76

5¢ / GB
(vs. 40¢ in 2007)

We Can Use It
Scientific
computation
Business
applications
Harvesting Internet
data

– 5 –

Oceans of Data, Skinny Pipes

1 Terabyte
Easy to store
Hard to move

Disks MB / s Time
Seagate Barracuda 115 2.3 hours
Seagate Cheetah 125 2.2 hours

Networks MB / s Time
Home Internet < 0.625 > 18.5 days

Gigabit Ethernet < 125 > 2.2 hours

PSC Teragrid
Connection

< 3,750 > 4.4 minutes

– 6 –

Data-Intensive System Challenge

For Computation That Accesses 1 TB in 5 minutes
Data distributed over 100+ disks

Assuming uniform data partitioning

Compute using 100+ processors
Connected by gigabit Ethernet (or equivalent)

System Requirements
Lots of disks
Lots of processors
Located in close proximity

Within reach of fast, local-area network

– 7 –

Google Data Centers

Dalles, Oregon
Hydroelectric power @ 2¢ /
KW Hr
50 Megawatts
Enough to power 6,000 homes

Engineered for maximum
modularity & power efficiency
Container: 1160 servers,
250KW
Server: 2 disks, 2 processors

– 8 –

High-Performance Distributed
Computing: Two Versions
Grid Computing
Connect small number of

big machines
Allow resource sharing
among supercomputers

Issues
Programs must usually
be specialized for
machine
Hard to get cooperation
from multiple
organizations

DISC System
Build big system from

many small machines
Use distributed systems
principles to construct
large-scale machine
File system provides
distribution, reliability,
recovery
Dynamically scheduled
task as basic processing
unit

– 9 –

Programming Model Comparison

Bulk Synchronous
Commonly used for compute-intensive applications

Map/Reduce
Commonly used for data-intensive applications

Issues
Raw performance
Scalability

Cost required to increase machine size by K
» ≥ K

Performance achieved by increasing machine size by K
» ≤ K

Frequency and impact of failures

– 10 –

Bulk Synchronous Programming

Solving Problem Over Grid
E.g., finite-element
computation

Partition into Regions
p regions for p processors

Map Region per Processor
Local computation sequential
Periodically communicate
boundary values with
neighbors

– 11 –

Typical HPC Operation
Characteristics

Long-lived processes
Make use of spatial locality
Hold all program data in
memory (no disk access)
High bandwidth
communication

Strengths
High utilization of resources
Effective for many scientific
applications

Weaknesses
Requires careful tuning of
application to resources
Intolerant of any variability

P1 P2 P3 P4 P5 Memory
Shared Memory

P1 P2 P3 P4 P5

Message Passing

– 12 –

Map/Reduce Programming Model

Map computation across many objects
E.g., 1010 Internet web pages

Aggregate results in many different ways
System deals with issues of resource allocation & reliability

M

x1

M

x2

M

x3

M

xn

k1

Map

Reduce
k1

kr

• • •

• • •

Key-Value
Pairs

Dean & Ghemawat: “MapReduce: Simplified Data
Processing on Large Clusters”, OSDI 2004

– 13 –

Map/Reduce Example

Create an word index of set of documents
Map: generate 〈word, count〉 pairs for all words in document
Reduce: sum word counts across documents

Come,
Dick

Come
and
see.

Come
and
see

Spot.

Come
and
see.

Come,
come.

M Extract

Word-Count
Pairs

〈dick, 1〉

〈see, 1〉

〈come, 1〉

〈and, 1〉

〈come, 1〉

〈come, 1〉

〈come, 1〉

M M M M

〈come, 2〉

〈see, 1〉

〈and, 1〉
〈and, 1〉

〈spot, 1〉

Sumdick
∑

1

and
∑

3

come
∑

6

see
∑

3

spot
∑

1

– 14 –

Map/Reduce Operation
Characteristics

Computation broken into
many, short-lived tasks

Mapping, reducing

Use disk storage to hold
intermediate results

Strengths
Great flexibility in placement,
scheduling, and load
balancing
Can access large data sets

Weaknesses
Higher overhead
Lower raw performance

Map
Reduce

Map
Reduce

Map
Reduce

Map
Reduce

Map/Reduce

– 15 –

System Comparison:
Programming Models

Programs described at very
low level

Specify detailed control of
processing & communications

Rely on small number of
software packages

Written by specialists
Limits classes of problems &
solution methods

Application programs
written in terms of high-level
operations on data
Runtime system controls
scheduling, load balancing,
…

Conventional HPC

Hardware

Machine-Dependent
Programming Model

Software
Packages

Application
Programs

Hardware

Machine-Independent
Programming Model

Runtime
System

Application
Programs

DISC

– 16 –

HPC Fault Tolerance

Checkpoint
Periodically store state of all
processes
Significant I/O traffic

Restore
When failure occurs
Reset state to that of last
checkpoint
All intervening computation
wasted

Performance Scaling
Very sensitive to number of
failing components

P1 P2 P3 P4 P5

Checkpoint

Checkpoint

Restore

Wasted
Computation

– 17 –

Map/Reduce Fault Tolerance
Data Integrity

Store multiple copies of each
file
Including intermediate
results of each Map / Reduce

Continuous checkpointing

Recovering from Failure
Simply recompute lost result

Localized effect

Dynamic scheduler keeps all
processors busy

Map
Reduce

Map
Reduce

Map
Reduce

Map
Reduce

Map/Reduce

– 18 –

DISC Scalability Advantages

Distributed system design principles lead to scalable design
Dynamically scheduled tasks with state held in replicated files

Provisioning Advantages
Can use consumer-grade components

maximizes cost-peformance

Can have heterogenous nodes
More efficient technology refresh

Operational Advantages
Minimal staffing
No downtime

– 19 –

Getting Started
Goal

Get people involved in DISC

Software
Hadoop Project

Open source project providing file system and Map/Reduce
Supported and used by Yahoo
Rapidly expanding user/developer base
Prototype on single machine, map onto cluster

– 20 –

Exploring Parallel Computation Models

DISC + Map/Reduce Provides Coarse-Grained Parallelism
Computation done by independent processes
File-based communication

Observations
Relatively “natural” programming model
Research issue to explore full potential and limits

Low Communication
Coarse-Grained

High Communication
Fine-Grained

SETI@home PRAMThreads

Map/Reduce

MPI

– 21 –

Example: Sparse Matrices with
Map/Reduce

Task: Compute product C = A·B
Assume most matrix entries are 0

Motivation
Core problem in scientific computing
Challenging for parallel execution
Demonstrate expressiveness of Map/Reduce

10 20

30 40

50 60 70

A
-1

-2 -3

-4

B
-10 -80

-60 -250

-170 -460

C

X =

– 22 –

Computing Sparse Matrix Product

Represent matrix as list of nonzero entries
〈row, col, value, matrixID〉

Strategy
Phase 1: Compute all products ai,k · bk,j

Phase 2: Sum products for each entry i,j
Each phase involves a Map/Reduce

10 20

30 40

50 60 70

A
-1

-2 -3

-4

B
1 110

A

1 320
A

2 230
A

2 340
A

3 150
A

3 260
A

3 370
A

1 1-1
B

2 1-2
B

2 2-3
B

3 2-4
B

– 23 –

Phase 1 Map of Matrix Multiply

Group values ai,k and bk,j according to key k

1 1-1
B

2 1-2
B

2 2-3
B

3 2-4
B

Key = row

1 110
A

1 320
A

2 230
A

2 340
A

3 150
A

3 260
A

3 370
A

Key = 2

Key = 3

Key = 1
1 110

A

3 150
A

2 230
A

3 260
A

1 320
A

2 340
A

3 370
A

1 1-1
B

2 1-2
B

2 2-3
B

3 2-4
B

Key = col

– 24 –

Phase 1 “Reduce” of Matrix Multiply

Generate all products ai,k · bk,j

1 1-10
C

3 1-50
A

2 1-60
C

2 2-90
C

3 1-120
C

3 2-180
C

1 2-80
C

2 2-160
C

3 2-280
C

Key = 2

Key = 3

Key = 1
1 110

A

3 150
A

2 230
A

3 260
A

1 320
A

2 340
A

3 370
A

1 1-1
B

2 1-2
B

2 2-3
B

3 2-4
B

X

X

X

– 25 –

Phase 2 Map of Matrix Multiply

Group products ai,k · bk,j with matching values of i and j

1 1-10
C

3 1-50
A

2 1-60
C

2 2-90
C

3 1-120
C

3 2-180
C

1 2-80
C

2 2-160
C

3 2-280
C

Key = 1,2

Key = 1,1

Key = 2,1

Key = 2,2

Key = 3,1

Key = 3,2

1 1-10
C

3 1-50
A

2 1-60
C

2 2-90
C

3 1-120
C

3 2-180
C

1 2-80
C

2 2-160
C

3 2-280
C

Key = row,col

– 26 –

Phase 2 Reduce of Matrix Multiply

Sum products to get final entries

1 1-10
C

2 1-60
C

2 2-250
C

3 1-170
C

1 2-80
C

3 2-460
C

-10 -80

-60 -250

-170 -460

C

Key = 1,2

Key = 1,1

Key = 2,1

Key = 2,2

Key = 3,1

Key = 3,2

1 1-10
C

3 1-50
A

2 1-60
C

2 2-90
C

3 1-120
C

3 2-180
C

1 2-80
C

2 2-160
C

3 2-280
C

– 27 –

Lessons from Sparse Matrix Example

Associative Matching is Powerful Communication
Primitive

Intermediate step in Map/Reduce

Similar Strategy Applies to Other Problems
Shortest path in graph
Database join

Many Performance Considerations
Kiefer, Volk, Lehner, TU Dresden
Should do systematic comparison to other sparse matrix
implementations

– 28 –

Tweaking MapReduce

Map/Reduce/Merge
Yang, et al. Yahoo & UCLA
Add merge step to do tagged merge of data sets

E.g., getting elements from matrices A & B

Demonstrate expressive power of relational algebra

Local Iterations
Kambatla, et al., Purdue
Support local and global iterations
Step toward bulk synchronous model

– 29 –

Global

Local

Local

Local

Global

Local

Local

Global

Local / Global Map/Reduce

Iterative Computations
e.g., PageRank

Graph Partitioning
Partition into clusters
Colocate data for each
cluster

Computation
Compute solution for
each cluster, holding
inter-cluster values
constant
Update inter-cluster
values

– 30 –

Pig Project

Chris Olston, Yahoo!
Part of Apache/Hadoop

Merge Database & Programming
SQL-like query language
Set-oriented function application

Implementation
Map onto Hadoop
Automatic selection / optimization of algorithm
Captures low-level tricks programmers have devised for
Map/Reduce

– 31 –

Generalizing Map/Reduce
E.g., Microsoft Dryad Project

Computational Model
Acyclic graph of operators

But expressed as textual program

Each takes collection of objects and
produces objects

Purely functional model

Implementation Concepts
Objects stored in files or memory
Any object may be lost; any
operator may fail
Replicate & recompute for fault
tolerance
Dynamic scheduling

Operators >> # Processors
x1 x2 x3 xn

• • •

Op2 Op2 Op2 Op2• • •

• • •

Opk Opk Opk Opk• • •

Op1 Op1 Op1 Op1

– 32 –

Implementation Challenges

Hadoop Platform is Blessing
Large community adding features, improving performance
Easy to deploy
Growing body of documentation and materials
Works well enough for range of applications

… And Curse
Map & reduce functionality hardwired
Not designed as extensible platform

Dryad Not Widely Adopted
305 citations on Google Scholar vs. 1759 Map/Reduce
Built on .NET

– 33 –

Conclusions

Distributed Systems Concepts Lead to Scalable
Machines

Loosely coupled execution model
Lowers cost of procurement & operation

Map/Reduce Gaining Widespread Use
Hadoop makes it widely available
Great for some applications, good enough for many others

Lots of Work to be Done
Richer set of programming models and implementations
Expanding range of applicability

Problems that are data and compute intensive
The future of supercomputing?

	Data�	Intensive�		Scalable�			Computing
	Outline
	Our Data-Driven World
	Why So Much Data?
	Oceans of Data, Skinny Pipes
	Data-Intensive System Challenge
	Google Data Centers
	High-Performance Distributed Computing: Two Versions
	Programming Model Comparison
	Bulk Synchronous Programming
	Typical HPC Operation
	Map/Reduce Programming Model
	Map/Reduce Example
	Map/Reduce Operation
	System Comparison:�Programming Models
	HPC Fault Tolerance
	Map/Reduce Fault Tolerance
	DISC Scalability Advantages
	Getting Started
	Exploring Parallel Computation Models
	Example: Sparse Matrices with Map/Reduce
	Computing Sparse Matrix Product
	Phase 1 Map of Matrix Multiply
	Phase 1 “Reduce” of Matrix Multiply
	Phase 2 Map of Matrix Multiply
	Phase 2 Reduce of Matrix Multiply
	Lessons from Sparse Matrix Example
	Tweaking MapReduce
	Local / Global Map/Reduce
	Pig Project
	Generalizing Map/Reduce
	Implementation Challenges
	Conclusions

